中国海光

第13卷 第3期

一种设计新颖的脉冲光泵远红外激光器

潘承志 藏建明 后其国 刘秀云 唐桂萍

(电子工业部12研究所)

提要:设计了一台宽带输出、高光束质量、栅网耦合、腔长可调的远红外激光器,得到了 CH₃OH 的 205.3 μm、163.9 μm、65.1 μm、233 μm 和 HCOOH 中的 309.23 μm 等 5 条脉冲 FIR 谱线振荡输出。

A newly designed pulsed and optically-pumped FIR laser

Pan Chengzhi, Zhan Jianming, Hou Qiguo, Liu Xiuyun, Tang Guiping

(Beijing Research Institute of Vacuum Electron Devices)

Abstract; A pulsed and optically-pumped FIR laser with a mesh coupling and a stable cavity has been designed. Its cavity length can be adjusted. 5 FIR laser lines at $205.3 \,\mu$ m, $163.9 \,\mu$ m, $65.1 \,\mu$ m, and $233 \,\mu$ m emitted from CH₃OH and $309.23 \,\mu$ m from HCOOH have been obtained.

一、设计考虑

1. 腔长的选择

实验发现¹¹, 在较强的泵浦能量下, 远红 外输出随管长的增加而增加。但为了进行腔 调谐, 腔长受到自由光谱范围的限制(它是相 邻光谱极大值的间距)。

为避免出现两个或多个标准具的模式, 必须选择腔的自由光谱区大于或等于激光带 宽,即

$d \leqslant \frac{\lambda^2}{2\Delta\lambda}$

远红外激光带宽 Δγ 一般为 50 MHz, 代入上 式求得 d≪3 m, 因此我们取 FIR 管长为 3 \mathbf{m}_{o}

2. 管径的选择

远红外激光管的管径越粗,在一定的泵 浦功率密度下,会使远红外输出功率增大。但 随着管径的增大,瓶颈效应越来越严重,这 是由于振动下激光能级很难扩散到管壁消激 发。因此,管径典型数值取1~4cm,我们取 管径为3.6cm。

3. 远红外窗的选择

由于金属栅网不具有密封性,必须选择 一种材料密封气体。为了得到宽带 FIR 输 出和将泵浦 IR 光和 FIR 光束进行有效地分 离,又要求这种材料在 50~500 µm 范围内 具有良好的透射(或反射)性能,在 9~11 µm

收稿日期:1984年12月24日。

· 152 ·

范围内具有很高的反射(或透射)性能。理论 和实验证明,石英单晶在 CO₂ 激光的 9*R*、9*P* 支具有良好的反射特性^[2],在远红外波段 很 宽的范围内具有良好的透过特性。因此我们 选取了石英单晶作为我们的远红外窗。

4. 栅网常数 g 的选择

一个金属网反射器栅和条栅的性质紧密 相关,如果它的栅网常数 g 小于波长 λ, 假定 是一个垂直入射的平面波,则两者不再是衍 射光栅。在各种衍射级次中,在 g < λ 情况下 只有零级透过,并保留零级反射波。在离栅 网的距离大于 g/2π 时,这些波是平面波。

条棚的透射系数 r 和反射系数 T 强烈地 依赖于极化,在长波长 $(g/\lambda \rightarrow 0)$ 情况下,当条 的取向垂直于线极化入射波的电矢量时,该 栅网是完全透明的,即 $|r^{a}| = 1$ 。在这种取向 下称之为容性条栅。对于另一种取向,即条 平行于电矢量,栅的作用如同一个半透明的 反射器, $|r^{a}| < 1$,于是称之为感性条栅^[33]。金 属网具有方形几何结构对称性,因此它的光 学性质与极化无关^[43],可以把它看作两个交 叉的条栅的迭加。因此,一个任意取向的金 属网的光学性质与具有相同尺寸 g,a(如图 1 所示)的感性条栅的性质是相同的。对于条 栅,Lamb 理论给出了透射率^[53],当 $\lambda \gg g$ 时, 有:

$$T = \left(\frac{2g}{\lambda} \ln \sin \frac{\pi a}{q}\right)^2$$

与条栅的情况不同,对于二维栅网尚无完备 的理论,对于非极化的辐射来说这种栅网和

一维栅对于平行极化的辐射具有相同的行为。因此上式同样被看作栅网的透射系数。

理论和实验都证明了棚网作为 FIR 输 出耦合时对波长具有选择性。我们所用棚网 的 a:g - 般为 1:10。当取 $g=50 \mu$ m,在 50 μ m $<\lambda < 200 \mu$ m 时能得到较好的输出耦合。 随着波长的增长,如当 $\lambda = 500 \mu$ m 时,由上 式得 T = 5%,此时远离最佳输出耦合。因 为光泵气体分子介质的增益系数都很高,输 出耦合 T在 10~60%之间。通过对 g为50 μ m 和 100 μ m 的 Ni 网进行理论和实验比 较,最终选取 $g=100 \mu$ m 的 Ni 网作为输入、 输出端,测得 $g=100 \mu$ m Ni 网对 CO₂ 激光 的透过率为 70%。

二、实 验

1. 激光器装置

结构图见图 2, 它由两部分组成:光栅调 谐 TEA-CO₂ 泵源激光器和网耦合稳定腔远 红外激光器。

泵浦激光器为电容火花阵列紫外光预电 离 CO₂ 激光器。旋转光栅转台,可分别得到由 CO₂ 的 9*R*40-9*R*4、9*P*4-9*P*44、10*R*44-10*R*4 和 10*P*4-10*P*44 四个支带内的 82 条谱线。

远红外管长 3 m, 内径 \$\phi 36 mm, 用金属 Ni 网作为输入、输出耦合器, 石英 晶片将 IR 光和 FIR 光有效地分离。管的另一端用 R 为 6 m 的球面镀金全反镜密封, 与栅网构成 平凹稳定腔。He-Ne 管 (1) 对 TEA-CO₂ 激 光器准直, He-Ne 管 (2) 对远红外激光管准

直, He-Ne 管(3) 对整个系统准直、对中。远 红外激光能量由 NJ-J1 型激光微能量计测 量。

2. 实验结果与讨论

1) 泵浦光束的改进

为了得到高质量的 FIR 光束,对 FIR 激光管要求均匀泵浦。 我们在 CO₂ 激光管 内加 φ30 mm 的光阑,输出能量可为原来的 80% 左右,测得激光模式为 TEM₁₀ 模,光强 降为 1/e² 时的发散半角为 3 mrad。

2) 远红外激光束质量

由于采用均匀泵浦, 栅网耦合输入输出, 大大地改善了 FIR 光束质量, 得到了近似高 斯分布的场强横向分布 (示于图 3), 测得光 强降为 1/e² 时的发散半角 α≤15 mrad。

图 3 新型 FIR 激光器输出光场的横向分布

3) 波长的测量

平移球面全反镜 M₄, 由螺旋测微器 读 数,可进行波长的测定, 图 4(a) 给出了测量 结果。从图中可以看出, 当腔长满足半波长 整数倍时, FIR 输出在原有很强输出的背景 上凸出一小鼓包。这是由于干涉仪自由光谱 范围与 FIR 谱线的线宽相当(图 4(b)), 因 此总有 1~2 个纵模落在此线宽内。强度起 伏 4I/I₀ 为 5~10%。

4)利用新装置对远红外激光辐射特性的研究

利用图 2 所示的远红外装置,我们对 D₂O、CH₃F、CH₃OH 和 HCOOH 从 65.1 ~496 μm 的 20 多条谱线进行了研究。事实 上,这种装置可得到由 CO₂ 9*R* 和 9*P* 支泵捕

(a) 调谐腔长测得的 FIR 输出;(b) 自由光谱范围与 FIR 谱线的线宽相当

的所有远红外谱线,这是因为石英单晶对9R 和 9P 支谱线具有良好的反射性能。表 1 给 出了这些谱线的泵浦线,远红外跃迁的上、下 能态, FIR 辐射波长, 泵浦能量, 输出能量, 工作气压,失谐量和阈值泵浦能量。从表1 中看出,使用g为50 µm的栅网作为输出耦 合器, 在 λ < 200 μm 时 FIR 输出大于 g 为 100 μm 时的耦合输出。但是当 λ>200 μm 时, FIR 输出就远远小于 g 为 100 µm 时的 耦合输出,这是因为此时 g=100 µm 的栅网 更接近最佳耦合输出。当我们使 CH3F 辐射 的 261.8 µm 和 384 µm 工作在最佳气压时 (分别为5Torr和6Torr),输出能量分别增 加3倍和5倍。因此,用CH3F作为增益介 质在本实验条件下预计可以得到几个毫焦耳 的最大 FIR 输出能量。 表1中给出的 FIR 输出能量较低,这是由于表中给出的工作气 压并非最佳气压;为了得到宽带输出,就难 以满足每个波长输出耦合最佳化条件;并且 FIR 工作气体不很纯, FIR 探测器灵敏度不 够,这些都是造成 FIR 输出能量偏 低的原 因。

图 5 给出了部分谱线的输出能量随气压 的变化关系。可以看出,一般气体工作物质 的最佳工作气压为 1~4Torr, D₂O 的工作

表 1

栅网常数	工作物质	CO ₂ 泵浦线	FIR 跃迁	FIR波长 (µm)	泵浦能量 (J)	FIR 能量 (mJ)	工作气压 (Torr)	失谐量 (cm ⁻¹)	阈值能量 (J)
50 µm	AL and PAS	9 <i>R</i> 12	9 ₂₈ →9 ₁₉	114	5.6	0.41	2.5	-0.023	1-20.0
	D ₂ O	9 <i>R</i> 22	4 ₀ →4 ₋₂	385	5.8	0.08	1.7	-0.0108	
		9P32	$5_{5150} \rightarrow 4_{4140}$	66	3.9	0.19	3.8	0.04	Jii.n -
		9 <i>P</i> 30	10_9→9_9	99	4.4	0.05	2.1	0.034	12.0
	CH3F	9 <i>R</i> 34	R(27)	214.8	1.8	0.12	2	-0.165	140.0
		9 <i>R</i> 24	R(22)	261.8	6.5	0.12	2	-0.404	
		9 <i>R</i> 16	R(18)	320.1	6.8	0.05	2	-0.659	Jana -
		9 <i>R</i> 10	R(15)	384	6.3	0.02	2.0	-0.889	40.4
100 µm	D ₂ O	9 <i>R</i> 12	9 ₂₈ →9 ₁₉	114	5.4	0.30	3.3	-0.023	1.05
		9 <i>R</i> 22	40→4-2	385	5.1	0.17	1.3	-0.0108	0.35
		9 <i>P</i> 32	5 ₅₁₅₀ ->4 ₄₁₄₀	66	5.3	0.14	3.3	0.04	2.28
		9 <i>P</i> 30	10_9->9_9	99	3.5	0.08	1.7	0.034	Anna
	「常い」 当天事」 作前称《 「流过题」	9 <i>R</i> 34	R(27)	214.8	1.8	0.23	2	-0.165	0.28
		9 <i>R</i> 30	R(25)	231	3.9	0.22	2	-0.251	The second
		9 <i>R</i> 28	R(24)	241	4.9	0.73	2	-0.298	1.32
		9 <i>R</i> 26	R(23)	250.6	5.8	0.55	2	-0.350	1.58
	ात्र प्रदान (शाः स्त्र भग्ना-स्त्र स्वरू	9 <i>R</i> 24	R(22)	261.8	6.1	0.19	2	-0.404	
	CH_3F	9 <i>R</i> 22	R(21)	275.1	6.5	0.30	2	-0.463	
		9R20	R(20)	288.2	6.5	0.12	2	-0.524	1 1 2 2 2
		9 <i>R</i> 18	R(19)	303.4	6.7	0.05	2	-0.590	The Contemport
	加	9 <i>R</i> 16	R(18)	320.1	6.8	0.16	2	-0.659	
	The second the	9 <i>R</i> 14	R(17)	339.5	6.5	0.11	2	-0.732	The
		9 <i>R</i> 10	R(15)	384	6.3	0.04	2	-0.889	
	pathoets a	9 <i>P</i> 20	Q(12)	496.1	4.6	0.01	2	-0.006	- ter a
	Hand Mark (1), Now 1	9 <i>P</i> 18	$9(024)^{a} \rightarrow 10(024)^{1}$	205.3	5.3	0.17	1.7	0.01	1.23
	СН3ОН	9 <i>P</i> 12	$13(025)^{0} \rightarrow $ $14(025)^{1x}$	163.9	5.4	0.20	0.8	-0.0177	1.75
	N. 8. 67 1	9 <i>R</i> 18	Star and a	65.1	5.3	0.03	1.5	क संगय ज	1
		9 <i>R</i> 10		233	4.4	0.14	2.5	1	1.200
		9 <i>R</i> 24	^a R _{0.1} (31)	418.51	4.2	0.04	0.4		
	нсоон	91 <i>R</i> 6		394.2	5.1	0.08	1.7		
		9 <i>R</i> 4		309.23	2.3	0.05	1.7		

气压范围比 CH₃OH、HCOOH 宽得多。 我们将 D₂O 的最佳工作气压与腔长 2m,小孔耦合的远红外管^[6]的最佳工作 气压进行比较,当腔长增加 1/3,最佳工 作气压同时降低约 1/3。这说明产生最 大输出的气压依赖于管长,管子越长,最 佳工作气压也越低。

图 6 给出了部分谱线的输出能量随 泵浦能量的变化关系。可以看出这些谱 线输出都未达到饱和,可望通过增加泵 浦能量得到大能量的 FIR 输出。

由实验测得的阈值泵浦能量(见图 6和表1)可以看出,随着泵浦吸收失谐 量的增大,阈值泵浦能量也逐渐增加。这 可解释为泵浦激光场和气体分子强烈的 近共振相互作用,不仅发生类激光行为,而且 可以发生类 Raman 行为,这些过程又和 A. C. Stark 漂移联系在一起,当失谐量越大,就 需要更强的电场强度将简并的能级 拉得越 开。Raman 过程往往比激光过程更有意义, 这主要是因为每个被吸收的 IR 光子产生一 个 Raman 光子,而激光发射则只限于一半 的受激分子。并且强场近共振相互作用产生 的 A. C. Stark 漂移还可进行 FIR 调谐。

参考文献

- G. Taylor et al.; Infrared Physics, 1978, 18, No. 5, 501.
- [2] Optical Society of America, Handbook of Optics, 7~19.
- [3] N. Marcuvits; Waveguide Handbook MIT, Red. Lab. Series (McGraw-Hill, New York 1951), Vol. 10.
- [4] R. Ullich et al.; Infrared Physics, 1967, 7, 39.
- [5] K. F. Renl, L. Genzel; Appl. Opt., 1962, 1, No. 5, 643.
- [6] 秦毅等; 《激光与红外》, 1984, No. 3, 73.